APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

JPRS L/9607

s 13 March 1981

FBIS

USSR Report

CYBERNETICS, COMPUTERS AND
AUTOMATION TECHNOLOGY

(FOUO 9/81)

FOREIGN BROADCAST INFORMATION SERVICE

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

NOTE

JPRS publications contain information primarily from foreign
newspapers, periodicals and books, but also from news agency
transmissions and broadcasts. Materials from foreign-language
gources are translated; those from English-language sources
are transcribed or reprinted, with the original phrasing and
other characteristics retained.

Headlines, editorial reports, and material enclosed in brackets
[] are supplied by JPRS. Processing indicators such as [Text]
or [Excerpt] in the first line of each item, or following the
last line of a brief, indicate how the original information was
processed. Where no processing indicator is given, the infor-
mation was summarized or extracted.

Unfamiliar names rendered phonetically or transliterated are
enclosed in parentheses. Words or names preceded by a ques-
tion mark and enclosed in parentheses were not clear in the
original but have been supplied as appropriate in context.
Other unattributed parenthetical notes within the body of an

- item originate with the source. Times within items are as
glven by source.

The contents of this publication in no way represent the poli-
cles, views or attitudes of the U.S. Government.

- COPYRIGHT LAWS AND REGULATIONS GOVERNING OWNERSHIP OF
MATERIALS REPRODUCED HEREIN REQUIRE THAT DISSEMINATION
OF THIS PUBLICATION BE RESTRICTED FOR OFFICIAL USE ONLY.

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

JPRS L/9607

13 March 1981

USSR REPORT
CYBERNETICS, COMPUTERS AND AUTOMATION TECHNOLOGY
- (FOUO 9/81)

CONTENTS
HARDWARE
The E1'brus SysteM.e.cevevevesos Geestensenrnetettsatrsosssassnsesenens 1
El'brus-1 in Serial Production; E1l'brus—2 Readied.......oceeecenassens 18
-a - {ITII - USSR - 21C S&T FOUO]

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

HARDWARE

UDC 681.3.01:681.3.06

THE EL'BRUS SYSTEM
Moscow PROGRAMMIROVANIYE in Russian No 6, 1980 pp 72-86
[Article by B.A. Babayan and Yu.Kh. Sakhin}

[Text] The article is devoted to a description of the architecture
and software of a new high performance family of multiprocessor com-
puter systems, the El'brus-1 (E-1) and El'brus-2 (E~2) MVK developed
at the Institute of Precision Mechanics and Computer Technology
imeni S.A. Lebedev.

The general principles of the El'brus system are outlined in the article and the
various components of the system are described; in addition the new features and
versions of implementation are outlined in more detail,

The El'brus system is a multiprocessor modular system with a high degree of dyna-
mism, stack organization for calculations and a tag configuration and hardware im-
plementation of the procedural mechanism.

I. General Concepts

When developing a computer system, one must take into account and balance the dif-
ferent characteristics (operating speed, cost, reliability, convenience of use and
so on). To retain conceptual unity, it is primarily necessary to ''prioritize' these
characteristics in a specific manner. The main principle from which the remaining
principles ensue must be determined for this purpose. The main principle in the
El'brus design is the principle of programming simplicity.

As design practice has demonstrated, this principle harmonizes well with the re-
malning aspects of the problem and its consistent fulfillment leads to correct
resolution of most of the main problems arising during development. Let us explain
this.

1. One of the most important features of the system is its dynamism. Generations
of previous machines and programming languages accustomed programmers to very
"static" utilization of resources and data types, which made programming compli-
cated. The machine program is also an algorithm whose structure has been adapted
to the configuration of the machine and has been limited by it. In this sense pro-
gramming consists of translating an abstract algorithm to a program. The more

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

dynamic the system is, the more precisely it can be adapted to the structure of
the algorithm and the simpler programming is. The degree of dynamism should be
sufficient so that there are no indications to physical resources (for example,
to arithmetic registers) in the machine languages and programs, but so that there
are algorithmic concepts (for example, local data procedures). The use of tags
[6] provides realization of the dynamism of data types. Good dynamic properties
make the system adaptable to terminal work.

2. Another important principle which facilitates programming is the modular na-
ture. Modularity is a method of controlling the information complexity of pro-
gramming and it permits one to conceal technical details from the programmer, re-
quiring only a knowledge of the interface from him. Modules should mee. :he fol-
lowing requirements:

_ a) modules should correspond to programming requirements. To do this, for
example, the machine instruction set should support in hardware such concepts as
procedure and data array;

b) the functions realized by the module should be sufficiently complete. For
example, the procedures should be recursive, which requires implementation of stack
discipline for calculations. Parameters should be transferred without limitation,
arrays should be dynamic and so on.

¢) the modules should be independent of resources;

d) modules should be independent of errors. Context security using tags has been
realized in practice for the first time in the El'brus.

e) the effectiveness of programs based on the modular principle should be high,
which is achieved by powerful hardware support.

3. The most important characteristic is effectiveness. There is the opinion that
the effectiveness and convenience of programming are mutually contradictory. Devel-
opment of the El'brus convinced us of the opposite. For the case of high performance
machines a system with maximum convenient programming permits realization of high
productivity. Actually, many algorithmic concepts are naturally embodied in the
hardvare (such as procedure, loop, array, expressions stack and so on) for ease of
programming, which makes apparatus optimization of calculations possible.

4. Programming is simplified considerably when oriented to high-level languages.
Other programming is not used in the El'brus system.

We note in conclusion that the means available to the user are usually employed for
the needs of systems programming as well:

a) systems programming is accomplished in high-level languages;

b) the user has zvailable those means of parallel programming, by use of which
the operating system of the El'brus is written;

c) the user and systems programmers have available the same memory distribution
equipment (dynamic arrays and so on);

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

d) the user and systems programmers employ the same El'brus file system
mechanisms.

With this approach, systems programmers find themselves under as comfortable condi-
tions as users.

2. Memory

A graphical depiction of the relationship of various schemes for organization of
virtual memory is shown in Figure 1.

. —.
2
E n °%P.9 c Manmuxc (cga»)vmmm;-
cmposvyHoR
empyrmypa)
ﬁb(3g c (4)
ppey Amndc (cmponuym)
[cezmenmum)
Figure 1
Key:
1. El'brus 3. Burroughs (segments)
2. Multics (segment-page structure) 4. Atlas (pages)

Unlike the Atlas [3] and Multics [4, 1] where the logical and physical memory are
divided in pages of constant length, the memory in B6700 and B7700 machines of the
Burroughs Company is distributed by segments of varying length according to the na-
tural size of the file being ordered.

As in the Atlas and Multics, there is a logical memory in the El'brus. A page of
logical memory contains 512 words. A word contains 64 information and 8 service
digits (tags, parity). However, whereas the segments are of constant length in the
Multics and consist of a fixed number of pages, there is no concept of segment in
the logical memory in the El'brus. The segments exist only in the physical memory.
If the requested array is less than a page, the system allocates the next logical
page completely to the given user. In this case, exactly as much physical memory
is allocated as the user requested., If the user requested an array larger than a
page, the system issues the entire number of sequential logical pages to him. In
the physical memory as many words as necessary for placement of the user array are
allocated. Thus, the scheme presented above illustrates the fact that the logical
memory in both the El'brus and Atlas is divided into rigid pages, but the physical
memory is distributed in segments of arbitrary length according to the actual size
of the array. Allocation of the physical memory according to the requirements of
the algorithm is convenient for the programmer, leads to efficient use of the memory
and reduces the size of transfer arrays. As is known, the average size of an array
declared by a programmer equals to 50-100 words [5]. An attempt to arrange this
array, for example, in pages of 256 words each (2 kilobytes), like IBM, leads to
poor utilization of memory. An attempt to reduce the size of the page leads to an
increase of the number of data transfers and to an increase of tables.

3
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

The program segments in the El'brus are also of arbitrary length (with accuracy to

a word). However, logical memory is not allocated to them and access occurs through
physical addresses. Taking into account that all programs in the El'brus are re-
entrant, this permits one to use a single copy of the program from different jobs.
This organization does mot lead to scanning (review) since all the physical addresses
(segment bases) are collected at one point (in the segment dictionary).

Special hardware operations for working with lists are provided in the system to
distribute the physical memory by segments of arbitrary length. Each occupied
segment is framed by two service words by use of which they are intertwined into
lists. Each list contains segments, the numbers of the logical pages of which are
comparable module 2k (see Figure 2).

There is associative memory of pages (AZUS-32 registers) in the processor, which

is used to recode the logical address to a physical address.

(1) Pyguveckan namamo

_ b
-

Ten s

Figure 2., TSP--user page table; ZS--occupied segment; SS-—free segment
Key:
1. Physical memory 2. List of free memory
If the required logical address 1s not present in the AZUS, the apparatus provides
an automatic search by list and carrying of the found address to the AZUS. The

free memory is also organized into lists. The advantages of this organization of
memory compared to Burroughs [2] are related to the absence of physical addresses

4

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

in descriptors, which frees one of the necessity of scanning upon return to the
physical memory system. This is manifested in the following:

a) there is no overhead for scanning in the mechanism of the virtual memory
vhen data are sent to secondary memory since the presence of logical memory per-
mits only table correction during evacuations;

b) descriptors may specifically describe subarrays or part of an array initially
declared by the user; this is impossible in the Burroughs since this would lead to
a significant complication of scanning;

c) 1if there are mathematical pages, no problem of array placement arises since
the arrays are automatically divided into pages;

d) the Burroughs scheme does not permit one to locate the descriptors in the
virtual evacuated segments. All the descriptors should be in the memory for the
case of scanning;

e) the memory is freed of local arrays upon completion of the procedure. When
{ the descriptors of these arrays are sent to global regions in the Burroughs they
will indicate a freed memory which can be allocated to another job. This may lead
to disruption of protection. It is inefficient to scan the regions of global data
- upon return from procedures due to concepts of efficiency. The presence of a logi-
cal memory in the El'brus removes “hese problems since the freed memory is not used
again;

f) the presence of physical addresses and scanning the Burroughs leads to complex
! problems upon dumping and repeated call-up of the problem (SWAP) in the case of time-
sharing, Actually, if the job is activated after dumping, the memory segments are
located in another physical zone which requires rather complex correction of all
descriptors. The scheme adopted in the Burroughs for controlling this complexity
= provides for allocation of the entire memory of the interactive job contiguously
to simplify correction. As a result, interactive and batch jobs are statistically
separated in the memory, which in turn leads to the undesirability of combining
interactive and batch modes in time. These difficulties are absent due to the
presence of a logical mnemory in the El’brus. The possibility of indicating the
chain of memory regions in a single exchange operation contributes to more rapid
dumping of the job.

The El'brus system provides operation with local and dynamic arrays. The size of
the dynamic array can vary during problem-solving. The memory occupied by the
local array is freed automatically by the operating system upon completion of the
procedure. Organization of dynamic arrays in the described scheme is simple and
requires only a single surplus word of memory per array as overhead. The presence
of dynamic array generation during problem-solving ensures automatism of memory
resets.

As already noted, the most important property of the entire system and of the mem-
ory system specifically consists in organization of data security. Context secur-
ity based on tag configuration is realized in the El'brus. One of the most important
designations of tags is dynamic detection of nonconformity between an operation and
the type of data at program execution time. This control

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

specifically permits one to strictly observe semantically correct actions with ad-
dress information and to detect any errors in the user programs which violate this
regularity. For example, it is impossible to add a number to the address, but a
descriptor can be indexed, obtaining a reference to the file element described by
the descriptor. With this type of indexation, an apparatus check is made whether
the index of the file size described by the descriptor is exceeded. Other opera-
tions with descriptors are provided which correspond to semantically correct actions
with the file, for example, "take the subfile,” "write by address" and so on. A
descriptor cannot be arbitrarily created by the user. It is issued to the user to-
gether with issuance of the corresponding new file by the system. All this is
dynamically monitored by the apparatus due to the fact that it "understands" types
of data by using tags. There is no address in the machine instructions. Instead,
indexes are used by means of which the descriptors are indexed. The initiai de-
scriptors used to form the context (address environment) of the current procedure
are found in the base registers. Their contents are formed by apparatus through
input and output instructions from the procedure. Resides regions described di-
rectly by base registers, the context of current procedure may also contain files
whose descriptors are located in these regions and so on. Conseguently, regardless
of what the code of a given procedure is, it is incapable of counting or changing
something beyond the bounds of its own context without starting other procedures.

Thus, all procedures are protected from each other in the El'brus system if of
course they do not share some regions of context with each other at the desire of
the program authors. There are a special type of data--procedure markers with
their own tag--for changing to a different context. Having some marker in the con-
text, one can omit this procedure, thus converting to a different context. However,
one cannot return to the context of this procedure whose marker is in the current
context while working in the old procedure. This protection is reliable. Specif-
ically, if the allocated procedure is omitted from the allocated program, this
procedure can either be cycled or can be returned to the point of call-up. It be-
comes possible in this case to analyze the results.

2ll errors in the procedure work are formulated in terms of the interface of a
given procedure. It has no side effects of any kind that cannot be checked. Since
protection is reliably provided automatically, the user is actually freed of the
concerns related to protection. It should be noted that there is essentially no
need for a privileged instructions mode in this system. It is introduced in the
El'brus only to enhance the efficiency of some operations.

3. Processes and Problems

A logical memory is allocated to each problem in the El'brus system. The problem
has a number of attributes which are worked out during development and can be
simplified or changed during its existence.

Prior to execution, batch jobs pass through the planning mechanism of a multi-
program mixture. Each problem can have parallel processes provided by the user
within it. No restrictions are placed on the number of these processes except
general restrictions by resources. A dynamic stack corresponds to each process
on a one-to-one basis. Creation and starting of a parallel process are almost
equivalent in expenditures to simple announcement of a file in the user pro-
gram. There is general priority of processes from different jobs ready for

6

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

execution in this system. This order is regulated by priorities. Each pro-
cessor of a multiprocessor system takes on execution of stacks from this order
after being released from routine work.

Signals are selected as the mechanism for synchronization of processes. The auth-
ors do not feel that this mechanism is convenient. However, the schemes for syn-
chronization proposed at present are less satisfactory. For example, let us note-
the monitor scheme most widely distributed in the theoretical literature. This
scheme requires compulsory fulfillment of rather complex programs compared to the
El'brus realization of critical signal sections. In operational systems one must
rather frequently cover two or more signals simultaneously, which leads to unnat-
ural complications in the monitor schemes.

The effectiveness of parallel processes is of primary significance in synchroniza-
tion schemes. Actually, no user begins to use parallel processes without a special
need. Only concepts for increasing efficiency usually force him to do this.
Therefore, it is illogical to talk about low-effective synchronization schemes.

The first most important "user" of parallel processes is the operating system it-
self of a multiprocessor machine. Highly effective synchronization is especially
important here. The developers of the Multics conducted an experiment, reducing
or enlarging the critical sections in the operating system, and concluded that
enlarged sections are more economical. This is the result of high overhead for
input and output from critical sections. High overhead for synchronization is in
itself poor and reduces the productivity of a multiprocessor machine. Moreover,
enlargement of critical sections occurs as a result and this in turn leads to the
fact that processors begin to interfere to a large degree with each other due to
closed signals for a prolonged period. The mechanism of synchronization is com-
pletely realized in the apparatus in the El'brus due to tag configuration and
therefore is very efficient. This realization is somewhat different in the E-1 and
E-2. Let us ascribe the E-2 scheme as the most perfected one. It should be noted
that the described scheme was first developed and realized in the El’'brus system.

The signal in the El'brus system is a word with a special tag which protects the
contents against improper use and modification. The signal is located in the user
data. The operation of opening and closing signals is a machine operation. Each
of them is fulfilled during two accesses to the memory: reading the signal with
simultaneous setting per unit of service bit (if this bit were in the unit prior
to this, the processor waits until it is cancelled) and modification of the signal
contents in the processor and inverse writing to the memory with cancellation of
the service bit. There is a signal bit in addition to the service bit. If this
bit is zero prior to the operation "close signal," the processor writes aone in it
the operation is completed with this and the next instruction--the first instruc-
tion of the critical section--begins to be carried out, If the signal bit is one
(the signal is closed), a special interruption occurs in which the system estab-
lishes the process to be carried out by program in the queue to the given signal
(the beginning of the queue begins in the signal itself), making use of the fact
that the service bit is closed; the service bit then opens up. In the typical case
when the open signal is closed prior to this, the operation is highly efficient.

In like fashion, the operation to open the signal reads the signal contents (with
interlocking of the service bit), checks the presence of a queue and in the typical
case of its absence opens the signal with removal of service interlocking. The

7
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

operation is completed with this. If there is a dqueue, a special interruption
occurs and the gueue to the signal is processed in the procedures.

operations of closing of write and read signals are introduced in the El'brus.
several processes may close a single read signal and at the same time operatée in
critical sections. BAnd only closing of a write signal blocks the operation of
processes of awaiting the opening of a given signal. This measure is also called
upon to reduce the interference of processors in a multiprocessor system.

Correct work with general data plays an important role in organization of parallel
calculations in a high-speed multiprocessor machine. The main problem here in-
cludes the following. Rapid calculations at modern speeds require organization of
jocal super RAMs (SOZU) for each processor. If some general data are

_ stored ir the local memory prior to the next input to the critical section on the
same processor, an attempt to read them in the given critical section will provide
the local variant of these data, whereas they can be announced in the memory by
another processor between these critical sections.

systems designed without regard to multiprocessor function and which utilize local
memories (for example, IBM) are forced to review the 502U of all processors with
any notation from any processor or channel to the general memory and to destory
local copies of general data. This is one of the most important factors of why
multimachine configurations are more popular in these systems and multiprocessor
configurations sharply inhibit work when the number of processors is increased.

A new solution of the indicated problem is realized in the El'brus. For simplicity
let us describe the solution of this problem in the E-1 complex. The complex con-=
tains two special registers for trime~code storage. Moreover, each cell of the

SOZU has a bit which indicates what information in this cell is related at a given
moment from the time registers. The corresponding bit is setat one upon access to
any cell of the SOZU during writing or reading. If it turns out at some moment
that the bits are in the position of the one the current time is entered in the
time register corresponding to the unit bit and the old contents are rewritten to
another register. All the bits are set to zero. This svstem permits rought de-
termination of when the last access to data in a specific cell of the SOZU oc-
curred. Moreover, the time of opening is stored in all open signals. If some
processor now attempts to close the signal, the times in the two service registers
are then compared to the time the given signal was opened. In the typical case
when opening of this signal was earlier than access to the data in the processor
(the signal time is less than the time in the register, corresponding to zero bit),
nothing is done with the information in the SOZU and the processor enters the
critical section. If access to some data occurred prior to opening of this signal,
the cells occupied by them are freed. An attempt to read them in the critical
section leads to reading from the general memory.

The complex of proposed measures leads to a system in which the processors essen-
tially do not interfere with each other.

4., The File System

Each file in the El'brus system contains data and file attributes. There are drum,
disc, magnetic tape, punch card, ATsPU [Alphanumeric printer], punch tape,

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

= alphanumeric display and typewriter files. Graphical files will be subsequently
realized. The main operations on files are generation, destruction, opening and
closing of a file, reading and modification of attributes and various types of ex-
changes. Direct and butter exchanges are provided. A direct exchange occurs be=
tween file data and user files. Direct exchanges can be synchronous and
asynchronous.

With buffer exchange, data transmission occurs between the file and one of the sys-
tems files (buffer). A descriptor of the operating buffer is issued to the user
after the exchange. Thus, the user can work directly on systems buffers.

There are two types of buffer exchanges--single-buffer and multibuffer. A single-
buffer exchange is an ordinary sequential buffered exchange. A multibuffer exchange
is used only for drum and disc files and permits the user to receive descriptors

for several buffers simultaneously containing different regions of the given file.

System responses which are completed by a "situation" output in some "emergency"
cases (see below), are provided during exchange with different errors. The user
can prescribe his own error-processing algorithm.

A significant typical feature of the file system is its dynamic nature. Unlike
many other systems, files can be generated within any procedure and not only at the
level of the problem-zontrol language. During operation, any drum or disc file
can be lengthened or shortened arbitrarily. A dynamic distribution system of the
physical drum and disc memory is realized to maintain these properties. With this -
dynamic nature of resource distribution (memory and devices), something must be
said about the approach to the problem of critical situations (dead lock) in the
- El'brus. It could be solved by requiring instructions from the programmer about
all the necessary resources or the work of a specific program segment. Another
well-known solution is realization of the "banker algorithm." Both these solutions -
violate modularity since one must know the necessary resources to it and the re-
i sources of all programs caused by it to start the problem.

A different solution, more convenient to the user and which does not contradict
modularity, has been adopted in the El'brus. Any problem solved in the system can
be "dumped" to slow devices at any moment, thus freeing all the resources required
for operation of it and it can then be continued at a later time.

Another important property of the El'brus file system is introduction of address
information or of interfile references to the files. This approach is logically
necessary in the El'brus system since it permits one to apply the context security
described in the memory section to the file system. The information stored in the
files is more permanent in nature, i.e., it has no specific lifetime (as, for ex-
ample, do files which exist for the longest time until the end of the problem) .
Moreover, a very large volume of information stored in the files must be consider~
ed. This nature of files requires in some cases the possibility of "review" of
all addresses which link files to each other. The following solution has been
adopted in the El'brus in this regard: all references are concentrated in the
file headings which are collected into a single general file unified for all drums
and for each set of discs. BAny heading contains a special key consisting of inter-
file references, each of which is the relative address of the file heading in the

- FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

headings file. Any object in the file system can be reached only through the
references. Since the entire headings file is directly inaccessible to the user,
the system changes references only through the user's requirement. Context secur-
ity in the file system is realized in this case.

A number of complexities which arise when working with address information and
methods of solving them in the El'brus must be noted here. A counter of references
for the given file is introduced in each file to facilitate the problem of file de-
struction. TIf the counter is equal to zero, the file can be destroyed at any time.
All the objects to which the given file refers are reviewed upon destruction of a
file and if the given reference was the only one (the reference counter is equal to
one), this object is also destroyed. This process is carried out recursively.

1f the user wants to destroy a file, the reference counter of which is not equal to
zero, the given file is destroyed together with the heading (with possible recur-
sive destruction described above), but a "keeper" measvtring one drum segment (32
words) in which the reference counter is stored remains in place of the heading.
This reference is subsequently destroyed upon an attempt at access to the given
file through any reference and the counter is reduced to one. This finally leads
to elimination of the "keeper." This technique of "keepers" 1is used when it is
necessary to transfer headings to another point within a headings file in the case
of expansion of the file and in this ‘case the "keeper" contains the address of the
new location of the heading.

The described work with address information may lead to the appearance of "garbage"
in the system, although the system of recursive destruction carried out above and

a number of other measures significantly reduce the number of these cases. A back-
ground "garbage collector," which operates without stopping the solution of the
problem beforehand has been developed to clean up this "garbage." The following
functions are entrusted to this 'garbage collector": destruction of the "garbage,”
elimination of "keepers," determination of the "oldest" files and candidates for
pushing to slower devices, destruction of all user files excluded from the system
and destruction of references earlier created by a different user to the "host"
files (if desired). This "garbage collector" is rather economical and its work is
related to review of one or two files.

Interfile references and context security, so far as is known to the authors, were
developed and implemented for the first time in the file system of the El'brus.

The mechanism of references described above could be sufficient to create a con-
text of already translated programs if one could get along without identifiers,
put identifiers are required for ccmmunication with man and for creation of the
correct information environment for him.

The information mechanism has been introduced in the system for working with iden-
tifiers. Technically this is a hierarchical index table with variable number of
levels, with blocks of constant length and with using the technique of table split-
ting. All information references on the drum are concentrated in a single systems
file. In like fashion, there is an individual information file for each set of
disc packs. From the external viewpoint, the irformation manual contains pairs:
identifier-interfile reference to the file or to another information manual. Thus,

10

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

—

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

directories are also included in the reference system and utilize standard tech-
niques ("keepers," "garbage collector" and so on). The structure of the relation-
ship between directories is not at all rigid in nature (for example, tree-like
similar to the Multics [1] and to other systems [2]). Directories are generated
and linked to each other and to the files by rather arbitrary system and user
programs.

Using the technique of directories, each program file--an objective code file
(FOK)=-can be referred to other files (program or data files) not only directly by
the reference in its heading but by using a so-called external name or identifier.
To do this, the possibility of linking each FOK through a switch to a specific di-
rectory which creates the context of the external names of a given FOK is provided.
If it is now necessary to have access to the file indicated bv using an external
name when completing a given program, the system will search for it in the file
according to the found reference. This access does not violate context security.
Thus, directories can again be referred to directories and the external name can
be polysyllabic. However, single-syllable names are most cormonly used in the
El'brus system since the search is carried out "from below" from the local direc-
tory rather than from the root. ’

Tt should be noted that only the reference to the object is stored in the directory
and in the file switch and all characteristics of the object are stored in the di-
rectory itself. However, since there can be as many references as desired from
different directories or file switches as desired, some information related to spe-
cific access to this object through a given input is stored in the directory. For
example, this information is writing restriction. The same object of a single user
can simply be an ordinary file which permits modification of data and attributes,
lengthening, shortening and destruction. This file may look like a permanent file
(constant) in the context of a different user. This is achieved by the information
1 mentioned in the reference. Another example is the right only to execute the FOK.
This permits the program author to transfer it to the context of other users, only
authorizing execution of it, having prohibited even readout of the FOK contents.

Moreover, this information is used for the following purposes. If the element of
a directory with specific identifier is referred to a different directory, this,
from the user's viewpoint, may create a hierarchy of directories, access to which
is possible by a polysyllabic external name. However, if the feature of "indirect"
context is contained with the reference from directory to directory, this means
that both directories seemingly create a unified context of identifiers. Thus,

if the search for some identifier in the first directory is unsuccessful, indirect
contexts begin to be reviewed in alphabetical order (this process can be continued
recursively).

Of course, any directory can be an indirect context for several other directories
simultaneously. Such a case is a global directory of a system which is either con-
tained directly or through a series of indirect contexts in the contexts of all
users. This mechanism permits one to get along in a large number of cases with a
single-syllable name and also abstract and make independent the program from a spe-
cific structure of directories.

The developed mechanisms and the structure of the archive described above permit one
to find a highly efficient method of starting one independently compiled program

11

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

from another. This is done in most cases by interfile references through switches

without resorting to a search by identifiers. This search is reduced to the maxi-

mum since there is no search "from the root," as in most other systems. Moreover,

introduction of interfile references and the described method of program context

formation permit one to solve correctly the problem "rules of search" existing in
- all systems (see, for example, Multics) [4].

Besides the two mentioned system files (the headings file and the directory file),
there are two other systems files: the operations file and the user file. The
documentation of problems in different stage of execution (in input queues, in the
process of fulfillment, in output queues and in the process of printing out the
results) is stored in the operations file. Each problem is referred to several
files from this file by using interfile references: the assignment file (if the
problem is a packet type) is an FOK translated from an assignment packet and input
and output files (files first read from input devices and files in which the output
is stored). The user file contains extensive information about each user.

A directory of users which is found in the context of an operating system exists in
the directory system. The input identifiers of this directory are the names of
the users and the reference to entering a given user in the user file is put into
agreement to each such name. The possibility of determining the structure of doc-
umentation in the user file within broad limits is provided in the El'brus system
for administration of the computer center. It typically contains the following
information: passwords, checks of access to the system, budget information, refer-
ence to the directory of a given user and the file context which determines it.
This context is found as a context reference for external names for a packet FOK
problem of a translated task of a given user. This context is used for dialogue
work to interpret external names coming from the terminal. A possible pattern of
connections and references in the El'brus file system is presented in Figure 3.

Let us analyze the process of establishing a new user and entering it into the sys-

- tem. Upon establishment of a new user, a new input to the user directory with name
of a given user is created by the operator and a reference to the newly established
documentation of the given user is entered in it. A directory is created which
will serve as the context of this user. A reference from the user documentation
(reference to context) is established for it. One or several global directories
are entered as an indirect context in this directory.

The user's,authority is checked upon input of it into the system and if this is a
batch job it is then translated, user context is assigned to it, the prob-

lem documentation is created in which the reference to the newly created assign-
ment FOK is written and finally the problem documentation is entered in one of the
preliminary planning queues.

The same checks are carried out with interactive input into the system and the user
context found in the documentation, as noted above, is used to interpret the ex-
ternal names assigned by the user from the terminal. Restoration of system files
is provided for the case of breakdowns and failures of apparatus and also errors in
system programs.

An input-output system having an exchange speed up to one billion bits/s in maxi-
mum configuration and which takes the load off the operating system to a significant

12
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

CPRN
Jn
o conn
- an
: EPKn e KC
Jn 3 @
3
.73
['4 - f)
3
3
S 0
=3
1) @ s .
= 3
5

Figure 3. SP--user directory; ZP--user notation; SFKP--file context direc-
tory; ZF--file heading; KS--context reference; RFOK--expanded
file of cbject code

Key:
1. Data 2. Program text

degree from working with the exchange queues, with dynamics and search for differ-
ent access routes to the same object have been developed to ensure operation of
files and the mechanism of virtual memory in the El'brus.

5. Programming Language

Programming languages play a special role in the El'brus project. This is indi-
cated by the main principle which is the basis of development=--programming simplic-
ity. This explains the high affinity of the configuration decisions of the El'brus
to high-level programming languages.

Work on configuration was to a significant degree work on language. We dwell below
on the most important features of the basic Autocode programming language of
El'brus. Selection of the name of the language is explained by the fact that this
language, not inferior to existing programming languages in level, is the "lowest"
programming level in El'brus and programming in it is equivalent in efficiency to
Assembler programming in other systems.

Turning to description of the language itself, it must be noted that its most im-
portant features (dynamism and modularity) are based on the corresponding features

13

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

of the system as a whole. Autocode is the first highly effective language in com-
puter practice that is dynamic by types.

Many dynamic languages (APL, Euler, Lisp, Gedanken, POP-2) were created in the past
which are convenient from the programmer's viewpoint, but are hardly effective on
existing machines. The presence of tag configuration permits one to make the dy-
namic language highly efficient. It was possible to write the operating system in
Autocode only due to the fact that Autocode is a dynamic language. Actually, the
procedures of the operating system are constantly concerned with statically non-
specific data users, the types and structure of which are determined dynamically
during operation (by tags).

Autocode is a recursive language and this property is maintained by the stack con-
figuration and nonaddress instruction system. As indicated by design practice, it

is this approach, unlike machines with directly addressible registers, that permits
one to achieve maximum efficiency of calculating expressions.

It is interesting to trace the history of this problem. Directly addressible reg-
isters were initially introduced into computer configuration to increase the speed
of calculations and this was justified to a sufficient degree (if one is diverted
from programming convenience) for machines of the early 1960s when the problem of
equipment economy became acute. A classical example of this configuration is IBM.
However, registers were only an encumbrance under conditions of extensive overlap-
ping of operations in the IBM model -91, when many different functional AU appeared
in a single processor since information was transferred directly from one arithmet-
ic device to another and the numbers of the registers were actually for identifica-
tion of information and their current position was associative. Under these condi-
tions the presence of the register number in the instruction set only led to
superfluous conflicts which slow down the work.

Registers for calculation of expressions (16 for the E-1 and 32 for the E-2)--the
apparatus apex of the stack (the number is not limited by any digit grid and is se-
lected only by concepts of efficiency)~~are provided in the El'brus. But these reg-
isters are not addressed directly from the program. During instruction decoding,
the processor translates a nonaddress system to a three-address register system,
dynamically designating the numbers of the registers. This approach is yet another
example of matching programming convenience and efficiency of calculations.

A significant improvement in the El'brus and consequently in the Autocode compared
to traditional computers is related to the FOR loops. Registers of control vari-
ables which service several embedded loops = are automatically introduced for them.
They are initialized by a special operation "beginning of loop " and a one is added
to or subtracted from them by a corresponding operation "end of loop'". There are
packed files which are described by a certificate consisting of an ordinary descrip-
tor and the aggregate of measuring steps arranged adjacent to it. Each step corre-
sponds to an increment of the packed file index upon variation of the corresponding
measurement per unit of index. This corresponds in accuracy to the technique used
in the translator. The operations "take the file element" and "take the address of
file element" can be used within the loop with instructions of which control vari-
ables index each dimension of the file. Upon first fulfillment of this instruction
or after interruption of the work of a loop - (for example, starting a procedure
within a loop)s the index of a packed file is calculated by multiplying the control

14

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

variables by the corresponding steps of the packed file with subsequent addition.
This index is then corrected by addition alone instead of multiplication during
subsequent repetitions of this loop by using special associative registers in

- which the current significance of the index for the packed file is stored.

This technique permits one to summon the values of the file elements for several of
the following loops to the special associative memory of the files since the law
of index variation is well known to the apparatus. The described mechanism may
serve as yet another illustration of the fact that programming efficiency and con-
venience assist each other.

An important innovation in Autocode, easily maintained by the apparatus, is the so-
called structural transition which permits one to leave a loop - of dynamically
embedded phrases up to a point noted by the programmer in a special manner. The
response which actually "replaces" the omitted phrases is provided in the point
marker. This response can be parametrized from the point the structural transition
occurs. The structural transition simplifies in a significant manner "prograrming
without a transition operator." It is also extremely important to transfer pro-
cessing of emergency situations from systems procedures to the user (for example,
the situation "end of file"). The iteration - loop is extremely simplified due to
the presence of structural transition--this is simply an infinite loop with emer-~
gency exit in the Autocode.

‘ The possibility of introducing an "arbitrary" syntax for procedure start-up (the
_ restriction of arbitrariness possibly has a double meaning) is provided in Autocode
1 for the case of starting up complex programs (for example, a complex variant of
‘ translator start-up) when a simple procedural syntax becomes inconvenient due to
i the large number and variety of parameters. This mechanism may serve to start
complex applied programs. Moreover, the syntax of instructions from terminals can
j be determined by using this mechanism.

! Autocode is used as a batch job control language. The idea of using a high-level
! language for this purpose (the same in which the problems are programmed) is not
: new, but according to our data it has been realized for the first time in industrial
development. Some facilities which are in reality language orthogonalization had
to be introduced into Autocode for this. The most significant of them are literal
files which are actually the cards of externmal files which are the basis for the
- batch job.

As a result, a unique property of Autocode, along with its high level, is its uni-
versality which is greater than that of assemblers in existing machines (it encom-
passes the job control language and terminal language). However, it must be said
that it is rather voluminous, like any practical language.

It should be noted that modern language-independent dynamic diagnosis can be easily
realized due to the tag configuration in the El'brus. Actually, a stack can be
printed at any moment of fulfillment where one can easily understand the sequence
of starting the procedures at the machine level and the significance of all the
local data and parameters with accuracy to types.

A complexer which permits combining of the programs written in different languages
is provided in the El'brus. An important feature of the complexer is that there is

15

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

no need to use it after each translation. The programs are issued by the trans-

lator in a form ready for execution and, moreover, the programs do not require

loading due to the instruction set. Programs can be complexed only if the errors

- in a program already operating are corrected.

6. The Instruction Set

The instruction set and the internal structure of the El'brus are designed for pro-
gramming only in high-level languages. The main organization of the computer pro-
cess is the stack. The names of procecures as well as the intermediate results of
calculating expressions are jocated in the stack. The top of the stack is the fast
registers in the processor. These registers are distributed dynamically during
problem-solving by the apparatus under the intermediate results of calculations.

There is a special table--base registers, containing descriptors in the processor.
These descriptors describe the stack regions accessible to a currently operating
procedure, i.e., they determine its address context. Base registers are inaccessi-

ble to the notation user and their contents are changed automatically by operations
of procedural transitions according to the context of the new procedure.

Names are addressed in the stack by using an address pair--the lexical-graphical

level of the procedure which determines the corresponding base register and of the
shift which is the index of the name within a given procedure. Access to the file

elements is gained through the file descriptor usually located in the stack.

The

files themselves are located outside the stack. Thus, a descriptor address and one
or several indexes (in the case of a multidimensional file) are used to calculate

the address of the file element.

Most of the most frequently used instructions have a length of one or two bytes.
Thus, for example, local variables of current procedure (the first 32 names) are
read in E-2 by a single-byte instruction while a two-byte format is used in the

remaining cases.

The arithmetic and logical operations have a single-byte format. The operands for
the queueing operation are the upper elements of the register apex of the stack.

Multibyte instructions are usually those containing a literal constant.

The type and format of data control the operation—fulfilling algorithm due to the
presence of tags. For example, whole and real operands of jdentical or different
formats can be fed in any combination oo the input of the same arithemtic operation

and the apparatus itself makes the necessary transformations prior to the operation.

1f it turned out during reading of the operand that indirect references lea

the passage through the address chain is realized by apparatus.

d to it,

- There are two types of branch instruction: conditional and unconditional
branch and calls to procedures. The address context is changed by apparatus
when making procedural transitions and control is transferred to the new program

segment.

The only type of address contained in the instruction code is the address pair,

= which is found as a result of program translation and is actually an encoded name.

This name is converted to a memory address only at the moment the instruction is

16

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

fulfilled and is determined by the content of the base registers. Consequently,
the addresses in the program code are not dependent either on the position of the
program itself in the memory or on the position of the stack. Therefore, all pro-
grams are re-enterable in the El'brus.

Compared to other computers, the apparatus realized in the El'brus made it possible:

a) to increase the productivity of the system as a whole and the efficiency
of equipment utilization and consequently to reduce the cost of calculatiuns;

b) significantly facilitate use of the system. There are no programs written
in Assembler language in the El'brus system;

¢) reduce the volume of software. The total volume of software, which in-
cludes all the necessary components inherent to the more developed systems (with-
out a data base) and which includes a programming system in three languages--
- Autocode, Algol and Fortran--comprised an order of 200,000 lines of Autocode text;

- d) increase scftware reliability.

BIBLIOGRAPHY

: 1. Organick, E. I., The Multics System: An Examination of Its Structure,
Cambridge, MIT Press, 1972,

‘ 2. Organick, E. I., Computer System Organization: The B5700/B6700 Series, New
_ York, Academic Press, 1973.

! 3. Kilburn et al, "One-Level Storage System," IRE TRANSACTIONS ON ELECTRONIC
COMPUTERS, EC~11l, No 2, April 1962.

4. Dennis, J. B., "Segmentation and the Design of Multiprogrammed Computers
Systems," JACM, Vol 12, No 4, October 1965.

: 5. Batson, S.-M. In and D. C. Wood, "Measurements of Segment Size," Second Sym-
posium on Operating Systems Principles, Princeton University, October 20-22,

1969.

6. Aailif, D. J., "Printsipy postroyeniya bazovoy mashiny" [Principles of Con-
structing a Baseline Machine], translated from English, Moscow, Mir, 1973.

COPYRIGHT: Izdatel'stvo "Nauka", "Programmirovaniye", 1980
[8144/0521-6521]

6521
CS0: 8144/0521

17

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

EL'LRUS-1 IN SERIAL PRODUCTION; EL'BRUS-2 READIED
Moscow SOVIET UNION in English No 11, Nov 80 pp 6-9
[Article by I. Nekhamkin: "El'brus Comes of Age']

[Text] E1l'brus-1 multi-processor computer complexes have gone into serial produc-
tion in the Soviet Union. Computing speed: from 1.5 to 15 million operations a
second. Memory holds about 10,000 million bits of information. El'brus-2 is

next in line.

The development of an integrated computer system in the USSR was described in an
article in this magazine 2 years ago (issue No 337, 1978) Letters from readers ask
for information about the latest Soviet developments. Interest in this field is
natural because it is advancing so rapidly: while three generations of human beings
succeed one another in a century, three generations of computers have arisen in less
than 40 years. Now fourth-generation computers, to which El'brus-1 (named after

Mt Elbrus in the Caucasus, Eurcpe's highest peak) belongs, are in.

Speed, one of the most important specifications of computers, is increasing steadily.
Structure, storage capacity, the technological level of the machine as a whole and
of its separate components, its softwear, the language of the computer, and the num-
ber of interconnections with its own components and also with outside users, are
equally important. This broad range of specifications held the attention of the
creators of the El'brus-1 multi-processor computer complex.

Among the leading figures in the big team of scientists and engineers who developed
El'brus-1 were pupils of Academician S. Lebedev, workers of the Institute of Pre-
cision Mechanics and Computer Techmology of the USSR Academy of Sciences.

"Why 1s it called a complex instead of just a computer?” we asked the director of
the institute, Vsevolod Burtsev, corresponding member of the USSR Academy of Sciences.

He invited us to follow him into a narrowish corridor formed by grey-blue metal cab-
inets roughly the size and shape of the dressers and wardrobes to be seen in an
average home. Pausing in front of onme of them, he said: "This is the brain of
El'brus-1, its 'thinking' section, called a processor. Farther on are the memory
units: magnetic tape (tape recorders, but of a special kind), magnetic discs (rolls
resembling those used in early phonographs). At the side are input-output processors,
through which the complex is linked up with its users. In short, this is a complex
made up of modules outwardly resembling wardrobes. This, actually, is the whole
complex."

18

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

We were surprised not to see the familiar console with flashing lights and hundreds
of buttons and switches.

"They aren't needed," the director said. 'During normal operation of the complex

this room could be locked up. The 'several' thousand subscribers who use the com-

plex--some of them in places dozens and hundreds of kilometers from here-—don't

: suspect it functions without supervision. Nor do they imagine that while working
for each of the subscribers the complex can simultaneously carry out calculations

- for all the others.”

"You said the room could be locked up. But what if something goes wrong?"

"If a module breaks down the computer automatically switches it off and its functions
are taken over by other modules. Simultaneously, after rearranging the flow of the
processes, the machine reports the malfunction to the operator: it prints out the
number of the faulty module and the cause of its breakdown. With that knowledge we
can replace it. Modular design is one of the complex's chief advantages.

"Look at this,'" he continued, opening one of the cabinets. "This is the central pro-
cessor. It has a computing speed of 1.5 million operations a second. A similar pro-
cessor stands beside it. Together they perform 3 million operations a second. The
complex is designed for as many as ten processors, with an overall computing speed

of 15 million operations a second."

"Is its memory based on the modular principle too?"

"Yes it is. The memory can be built up by the addition of standard modules, from
several tens of millions of bits of information to approximately 10,000 million."

When several years ago, British experts compared a computer with the human brain,
they found that the human memory has a theoretical maximum capacity of 1,000 million
bits of information in a lifetime, while the computer had a volume of 30 million.
But in the past decade computers have made impressive progress: today their memory
can hold as much information as that of dozens of sages.

The designers endowed the complex with the ability to communicate high-level lan-
guages. This has facilitated the work of the programmers and at the same time has
made it a polyglot. It can communicate, if necessary, with computers that use other
languages. There are plenty of subjects for conversations of that kind because the
number of computersin our country is quickly growing. They are being successfully
supplemented by the integrated computer system designed and built by countries of
the socialist community. These machines have won high praise from experts in

many countries but were met with dissatisfaction by some Western periodicals.
Writing in COMPUTER WEEKLY, Rex Malik said that the Western hopes of colossal sales
of computers to CMEA countries failed to come true. The Soviet Union stands for
broad and mutually advantageous trade with the whole world. However, the lines
above, written 7 years ago, are interesting to re-read today, when some people
claim that East-West cooperation is a "one-way street."

El'brus-1 has gone into serial production,' Vsevolod Burtsev said. "Its use sim-
plifies and speeds up the designing of seagoing vessels and aircraft, complex man-—
agement and information systems, and so on. In short, a computer of this class has
many applications.

19

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

Pointing to another group of similar-looking grey-blue cabinets, he asked, "What
do you think that is?"

"An El'brus?"

The doctor smiles. 'Yes, but it's El'brus-2, the younger brother of the complex
you just saw, and ten times more powerful. El'brus-2 is a multi-processor complex
developed on the new design and technological basis of fourth-generation computers,
having integrated microcircuits. In order to organize the serial manufacture of
such powerful and super-powerful integrated circuits, precision multi-layer high-
frequency ships and other components we had to master many new processes and start
the mass—-scale manufacture of sophisticated components. Also we had to draw up,
- with the help of computers, of course, an enormous amount of documentation."

The bulk of this work has now been done, and El'brus-2 is in the production stage.
It will perform at the rate of 150 million operations a second. Each operation will
take only between two and three ten-millionths of a second, a duration of time in
which light travels a distance of only a few dozen meters.

The new complexes will enable Soviet specialists to develop still more powerful
computers, needed in all spheres of life in all countries. The aim of improving
and effectively applying electronic computers in all spheres of the Soviet econowy,
set by the 25th Party Congress in 1976, is being carried out with success.

20

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

R 21

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

This multi-layered printed circuit board interconnects the standard

replaceable elements of the El'brus-1 complex.

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

22

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

When an element (another type of which is seen in this picture) goes out of

order it is replaced by a new one much in the same way as a tube in an old

radio set was changed.

The circuits are designed automatically by a computer

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

23
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

If a malfunction occurs this console indicates its rature

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

FOR OFFICIAL USE ONLY

Part of the external storage of El'brus-1.

Tl

On the bottom we see one of its
components. This cylinder with
magnetic coating turns at a speed
6,000 rpm and can register 32
million bits of information, or
about as many as are contained in
four large volumes of 500 pages
each. The computer scans all that
in about 1 second.

- COPYRIGHT: "Soviet Union", 1980
[107-E]

CSC: 1863 END
24

- FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300090029-8

